Ecosystem
If your project implements a paper, represents other use-cases not covered in our official tutorials, Kaggle competition’s code, or just your code presents interesting results and uses PyTorch-Ignite. We would like to add your project to this list, so please open an issue here: https://github.com/pytorch-ignite/pytorch-ignite.ai/issues with brief description of the project.
The list below is unexhausted list of references that we are aware of.
Research Papers
- BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian Active Learning
- A Model to Search for Synthesizable Molecules
- Localised Generative Flows
- Extracting T Cell Function and Differentiation Characteristics from the Biomedical Literature
- Variational Information Distillation for Knowledge Transfer
- XPersona: Evaluating Multilingual Personalized Chatbot
- CNN-CASS: CNN for Classification of Coronary Artery Stenosis Score in MPR Images
- Bridging Text and Video: A Universal Multimodal Transformer for Video-Audio Scene-Aware Dialog
- Adversarial Decomposition of Text Representation
- Uncertainty Estimation Using a Single Deep Deterministic Neural Network
- DeepSphere: a graph-based spherical CNN
- Norm-in-Norm Loss with Faster Convergence and Better Performance for Image Quality Assessment
- Unified Quality Assessment of In-the-Wild Videos with Mixed Datasets Training
- Deep Signature Transforms
- Neural CDEs for Long Time-Series via the Log-ODE Method
- Volumetric Grasping Network
- Mood Classification using Listening Data
- Deterministic Uncertainty Estimation (DUE)
- PyTorch-Hebbian: facilitating local learning in a deep learning framework
- Stochastic Weight Matrix-Based Regularization Methods for Deep Neural Networks
- Learning explanations that are hard to vary
- The role of disentanglement in generalisation
- A Probabilistic Programming Approach to Protein Structure Superposition
- PadChest: A large chest x-ray image dataset with multi-label annotated reports
- Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data
Blog articles, tutorials, books
- State-of-the-Art Conversational AI with Transfer Learning
- Tutorial on Transfer Learning in NLP held at NAACL 2019
- Deep-Reinforcement-Learning-Hands-On-Second-Edition, published by Packt
- Once Upon a Repository: How to Write Readable, Maintainable Code with PyTorch
- The Hero Rises: Build Your Own SSD
- Using Optuna to Optimize PyTorch Ignite Hyperparameters
Toolkits
- Project MONAI - AI Toolkit for Healthcare Imaging
- DeepSeismic - Deep Learning for Seismic Imaging and Interpretation
- Nussl - a flexible, object-oriented Python audio source separation library
- xFraud: Explainable Fraud Transaction Detection on Heterogeneous Graphs
- PyTorch Adapt - A fully featured and modular domain adaptation library
- gnina-torch: PyTorch implementation of GNINA scoring function
- PyTorch-Ignite Code-generator: The easiest way to create your training scripts with PyTorch-Ignite
Others
- Implementation of “Attention is All You Need” paper
- Implementation of DropBlock: A regularization method for convolutional networks in PyTorch
- Kaggle Kuzushiji Recognition: 2nd place solution
- Unsupervised Data Augmentation experiments in PyTorch
- Hyperparameters tuning with Optuna
- Logging with ChainerUI
- FixMatch experiments in PyTorch and Ignite (CTA dataaug policy)
- Kaggle Birdcall Identification Competition: 1st place solution
- Logging with Aim - An open-source experiment tracker
See other projects at “Used by”.